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Abstract. The thermodynamics of an extended BCS model of superconductivity is investigated. A phys-
ical system is described by a Hamiltonian containing the BCS interaction and an attractive four-fermion
interaction. The four-fermion potential is caused by attractions between Cooper pairs mediated by the
phonon field. The weakness of this potential allows the use of perturbation theory. The perturbation ex-
pansion was restricted to the first order because in the ground state the second order terms are not larger
than 0.5 percent of first order correction for parameters used for calculations. The BCS Hamiltonian is an
unperturbed one. The ground state and the thermal properties are examined. As a result the jump in the
specific heat is higher than that in the BCS case. Moreover, the squared critical field is larger than the
corresponding one in the BCS theory. Additionally, we show connections with the Bogolyubov’s mean field
approach used earlier in order to investigate general physical consequences of the model.

PACS. 74.20.-z Theories and models of superconducting state – 74.20.Fg BCS theory and its development

1 Introduction

Over the past decades many new phenomena have
been discovered (e.g., high temperature superconductiv-
ity, heavy fermion superconductors and unusual proper-
ties of 3He). These discoveries are still intriguing and lead
to new questions on the nature of superconductivity and
superfluidity. The problem of the internal symmetry of
gap parameters is one such a question. Furthermore, how
many particles are involved in constituting the basic clus-
ters responsible for the occurrence of new phases? Are only
two-particle interactions relevant to these systems (e.g.,
Cooper pairs [1,2]) or can three or four-particle struc-
tures also be taken into account? The last question was
addressed in [3]. In that paper we focused on the deriva-
tion of four fermion interactions by making use of a new
canonical transformation to the Fröhlich’s Hamiltonian
completed with the terms proportional to the third power
of electron-phonon coupling. After some reducing proce-
dures we obtained the following Hamiltonian

H = HBCS + V4,

where

HBCS =
∑

kσ

ξka∗
kσakσ−|Λ|−1

∑

k,k′
Gkk′a∗

k+a∗
−k−a−k′−ak′+.

a e-mail: tarasek1@cm.umk.pl

The reduced four-fermion interaction V4 reads

V4 = −|Λ|−1
∑

k,k′
gkk′b∗kb∗−kb−k′bk′ , (1.1)

where
bk = ak+ak−

and operators akσ, a∗
kσ denote the annihilation and cre-

ation operators, respectively. |Λ| is the volume of the sys-
tem and ξk denotes one-electron energy. This potential
describes the interaction between the Cooper pairs with
momenta and spins {k+,−k−} and {−k+,k−}.

Moreover, we were able to find the sign and the ap-
proximated form of coupling constant of the four-fermion
interaction

gkF kF ≈ D6
kF

�5ω5
kF

,

where DkF and �ωkF are the electron-phonon coupling
constant and the phonon energy at Fermi level, respec-
tively. The relationship between this coupling constant
and BCS coupling constant was estimated to be

gkF kF =
G3

kF kF

�2ω2
kF

.

This relationship points to the weak character of the
quadruple interaction in comparison to familiar Cooper
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pairing. In classical superconductors such an effect can-
not be observed due to weak BCS coupling and too strong
Coulomb repulsion between electrons. However, in mate-
rials with strong coupling between electrons and phonons
such an effect could be visible and recognizable especially
from surveys of magnetic flux quanta. It is widely accepted
that if half-h/2e magnetic flux quanta appear among usual
ones it points to the existence of quadruples in an investi-
gated system. In this paper we strive to answer the ques-
tion what the influence of quadruples on the BCS system
and its thermodynamics is. Is it possible to grasp some
distinctive features which can help in recognition the pres-
ence of quadruples in a physical system?

This issue has become more and more interesting due
to some discoveries and suggestions. Namely, in 1993
Schneider and Keller [4] measured the relationship be-
tween the critical temperature and zero temperature con-
densate density of some cuprates and Chevrel-phases su-
perconductors. They noticed that the experimental data
for Y Ba2Cu3O6.602, for example, point to the behavior of a
dilute Bose gas. As a result they suggested Bose condensa-
tion of weakly interacting fermion pairs as a mechanism of
transition from the normal to the superconducting state.
Moreover, a discovery of Bunkov et al. [5] points to the
presence of fermion quadruples in 3He. Their work was
devoted to the problem of the influence of spatial disor-
der on the order parameter in superfluid 3He. The au-
thors, quoting Volovik [6], suggested that unusual spectra
of 3He in aerogel could be explained by a process in which
impurities tend to destroy the anisotropic correlations of
the order parameter, while correlations of higher symme-
try can survive (e.g. four-particle correlations). Two pa-
pers [7,8] report a discovery of the half-h/2e magnetic
flux quanta coexisting together with the usual ones in
SQUIDs fabricated of bicrystalline Y Ba2Cu3O7−δ films.
As is known, this situation corresponds to the presence
of fermion quadruples in a physical system and points to
taking the interplay between Cooper pairs and quadru-
ples into consideration. It is worthwhile to mention that
there were some attempts of introducing the four-fermion
interactions to the nuclear physics [9].

The BCS theory [1] is still very significant to this
problem and can serve as a frame of our considera-
tions. In this frame [10] we investigated earlier the sys-
tem with Cooper’s pairs and quadruples making use of
the Bogolyubov’s mean field approach. In that paper it
was assumed that

Gkk′ = Gχ(k)χ(k′), G > 0, gkk′ = gχ(k)χ(k′), g > 0,

with χ(k) denoting the characteristic function of the set
{k : −δ < ξk < δ} for ξk = �

2k2

2m − µ and fixed δ. More-
over, µ denotes the chemical potential. A structure of ex-
cited states and the ground state were examined. More-
over, a preliminary insight into thermodynamics of this
system was done but the resulting expressions for two or-
der parameters and the statistical sum were too compli-
cated to be analyzed in detail. For instance, the equations
for the BCS and quadruple order parameters, which were
assumed to be real, proved to be coupled and impossi-

ble to be solved in the general case. It should be added
that these expressions are exact in the thermodynamic
limit [11], however, the mathematical complexity of the
problem made the thermodynamics of this Hamiltonian
almost entirely obscure. Therefore there appeared a need
for looking for an approximated method to investigate the
thermodynamics. It turned out that it could be done by
making use of perturbation theory. The BCS system can
be an unperturbed one and V4 a perturbation. In this pa-
per the ground state and equilibrium properties were in-
vestigated for the intermediate coupling. Additionally, the
analytical forms of some thermodynamic functions in the
vicinity of Tc and T = 0 were found for the weak cou-
pling regime. It was shown that the jump in the specific
heat is higher than that of the BCS case. Moreover, the
squared critical magnetic field exceeds that for the BCS
case. Next, we confront the results obtained for the ground
state with those obtained in the frame of the Bogolyubov’s
mean field method [14,15]. This method is more general
than perturbation theory used in the paper in the sense
that the Bogolyubov’s approach comprises directly the in-
fluence of quadruples on the Cooper pairs due to the cou-
pling all the order parameters. Furthermore, it can be used
even to cases in which the quadruple interaction is not so
weak in comparison to the BCS one. However, when the
quadruple gap is much smaller than the BCS one the effect
of their coupling is negligible and the agreement between
two approaches is obtained.

2 The ground state

We aim at obtaining the first order corrections to the
ground state BCS energy. The system is described by the
following Hamiltonian

H = H0 + V4,

where H0 = HBCS . The potential V4 is assumed to be
much smaller than the BCS interaction and is treated as
a perturbation. The BCS ground state vector is used in
the following form

|BCS 〉 =
∏

k>0

|kBCS 〉 =
∏

k>0

(u2
k + ukvk(a∗

k+a∗
−k−

− a∗
k−a∗

−k+) − v2
ka∗

k+a∗
k−a∗

−k+a∗
−k−)|0〉, (2.1)

where the product is over a fixed half-space of RR3. |uk|2 =
1
2 (1 + ξk

Ek
), |vk|2 = 1

2 (1 − ξk

Ek
) are the well-known varia-

tional parameters [2], where EGk =
√

ξ2
k + |∆kG|2, with

complex ∆kG := |Λ|−1
∑

k′ Gkk′u∗
k′vk′ and single-electron

energies ξk are measured from the chemical potential µ.
In order to obtain the first order correction we need to
calculate the expectation value of V4 in the BCS ground
state, namely

Eg = 〈BCS |V4|BCS 〉 = −|Λ|−1
∑

k,k′
gkk′(u∗

kvk)2(uk′v∗k′)2.

(2.2)
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Let us define now a new parameter in the following form

∆∗
kg := −|Λ|−1

∑

k′
gkk′(uk′v∗k′)2

= −|Λ|−1
∑

k′
gkk′

∆∗
k′G∆∗

k′G
4(ξ2

k′ + |∆k′G|2) . (2.3)

The new parameter can be regarded as an complex or-
der parameter corresponding to quadruples. Quadruples
appear as a result of the interactions between Cooper
pairs [3]. The four-fermion interaction is mediated by the
phonon field and is significantly weaker than the BCS in-
teraction. The appearance of quadruples is entirely de-
termined by the existence of Cooper pairs in the system.
Without Cooper pairs quadruples cannot exist in this case.
Having defined the new parameter we can now express the
correction term in terms of this parameter and write down
the total energy of the system, namely

E0 = EBCS +
1
4

∑

k

∆kg∆
∗
kG∆∗

kG

ξ2
k + |∆kG|2

= EBCS − |Λ| |∆g|2
g

. (2.4)

It is evident from the equation above that E0 < EBCS .
The question arises what the properties of the new gap

parameter are? To answer this question let us replace the
sum with an integral in the equation (2.3). Finally, we
obtain

∆g = −gρF
1
4
∆2

G

δ∫

−δ

dξ

(ξ2 + |∆G|2)

= −gρF
1
2

∆2
G

|∆G| arctan
δ

|∆G| . (2.5)

We exploited here the assumptions regarding the range
of both interactions presented in the Introduction as well
as the independence of the order parameters of the mo-
mentum vector. Moreover, the standard approximation for
the density of states ρ(ξ) ≈ ρF , where ρF is the density of
states for a free electron gas at the Fermi level, was used.
Now let us look at two opposite limits of |∆g|, namely,
|∆G| → ∞ and |∆G| → 0. In the former case it is obvious
that in this limit the absolute value |∆g| = gρF δ

2 . In the
latter case |∆g| = 0 is obtained. The second result is not
surprising; however, the first limit means that there is a
saturation of the gap for quadruples and despite the in-
crease of the strength of BCS pairing mechanisms the gap
of quadruples does not increase further. It is worthwhile
to note that ∆g is a linear function of gρF . This means
that in the case of very weak interactions between fermion
pairs the contribution of these interactions to the ground
state energy is weaker, correspondingly.

The next problem is what happens to the chemical
potential when quadruples coexist with Cooper pairs in
the system. The ground state energy takes the following

form

E0 =
∑

k>0

[
2ξk − Ek − ξ2

k

Ek
+

1
2

∆kg∆
∗
kG∆∗

kG

ξ2
k + |∆kG|2

]

or

E0 =
∑

k>0

[
2ξk − 2Ek +

|∆kG|2
Ek

+
1
4

∆kg∆
∗
kG∆∗

kG + ∆∗
kg∆kG∆kG

ξ2
k + |∆kG|2

]
. (2.6)

It is known that the average number of electrons in the
ground state can be obtained from

N = −∂E0

∂µ
.

Differentiation of the ground state energy yields

N =
∑

k

[
1 − 1

2
ξk
Ek

− 2ξkE2
k − ξ3

k

2E3
k

+
ξk(∆kg∆

∗
kG∆∗

kG + ∆∗
kg∆kG∆kG)

4(ξ2
k + |∆kG|2)2

]
, (2.7)

where summation is over the whole momentum space. Af-
ter a few simple steps, where we used the fact that some
functions in the expression above are odd functions of ξ,
it yields

N =
∑

k:ξk<−δ

2 + 2|Λ|ρF δ,

that implies µ = EF as it is in the BCS theory [12]. EF

denotes the Fermi energy of a free electron gas.
An important remark should be made here. We re-

stricted the perturbation expansion to the first order term.
The second order terms give the contributions of order
0.5 percent of the first order one. Moreover, the form of
the quadruple gap and the correction to the ground state
energy does not contain a difficulty inherent in the BCS
theory. As is remembered this difficulty leads to the diver-
gence in the perturbation series with respect to the BCS
coupling constant and makes such a perturbation expan-
sion unfeasible in the BCS theory.

3 The excited states

Now we would like to look at the excitation spectrum for
the BCS case written in terms of the ground state vec-
tor (2.1). We follow the standard route [12] introducing
the Bogolyubov-Valatin transformation with complex co-
efficients

α∗
k1 = uka∗

k1 − vkak4 , α∗
k2 = uka∗

k2 + vkak3

α∗
k3 = uka∗

k3 − vkak2 , α∗
k4 = uka∗

k4 + vkak1,

where a new notation concerning indices was used: k1 =
k+, k2 = k−, k3 = −k+, k4 = −k−. Of course, the
operators α satisfy the following equation

α|BCS 〉 = 0.
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ρBCS :=
∏

k>0

PkBCS + e−βEGk
4∑

i=1

Pki + e−2βEGk
∑
i<j

Pkij + e−3βEGk
∑

i<j<l

Pkijl + e−4βEGkPk1234

(1 + e−βEGk)4
,

The normalized k-excited states are shown in Appendix A.
Making use of them it is easy to check that the excitation
energies are as follows

〈ki |H |ki〉 − EkBCS = EGk, (3.1)

〈kij |H |kij 〉 − EkBCS = 2EGk, (3.2)

〈kijl |H |kijl 〉 − EkBCS = 3EGk, (3.3)

〈k1234 |H |k1234〉 − EkBCS = 4EGk, (3.4)

where i, j, l ∈ {1, 2, 3, 4}. This result was expected to be
obtained and now one can proceed towards the thermody-
namics. As is known, this excitation spectrum serves for
constructing the density matrix for the BCS system.

4 The thermodynamics

Now we can follow the standard procedure [2,12] and con-
struct the density matrix for the unperturbed system

See equation above.

where the operators P are projectors defined as follows

PkBCS : = |kBCS 〉〈BCSk |,
Pki : = |ki〉〈ik |,

Pkij : = |kij 〉〈ijk |,
Pkijl : = |kijl 〉〈ijlk |,

Pk1234 : = |k1234〉〈1234k |.
Of course, this density matrix is entirely equivalent to that
one used in [2,12]. To make the calculations more conve-
nient let us introduce new functions:

fk1 :=
4e−βEGk

Mk
, fk2 :=

6e−2βEGk

Mk
,

fk3 :=
4e−3βEGk

Mk
, fk4 :=

e−4βEGk

Mk
,

where Mk := (1 + e−βEGk)4 = 1 + 4e−βEGk + 6e−2βEGk +
4e−3βEGk + e−4βEGk . The density matrix of the BCS sys-
tem in terms of these functions is

ρBCS :=
∏

k>0

[(
1 −

4∑

i=1

fki

)
PkBCS +

1
4
fk1

4∑

i=1

Pki

+
1
6
fk2

∑

i<j

Pkij +
1
4
fk3

∑

i<j<l

Pkijl + fk4Pk1234

⎤

⎦ . (4.1)

Having the density matrix at our disposal we can address
the problem of the thermodynamic functions of the total

system. As is known, (e.g., [13]) it is possible to expand
the free energy in the perturbation series, namely

Fs = FBCS + Tr ρBCSV4 + . . . (4.2)

We are only interested in the first order corrections due
to the arguments concerning the second order corrections
in the ground state used in Section 3. It is supposed here
that the latter are not important at finite temperatures
as it is at T = 0. Therefore, it suffices to calculate the
expectation value of the operator V4 in the state ρBCS .
One obtains

Tr ρBCSV4 = −|Λ|−1
∑

k,k′
gkk′(u∗

kvk)2(uk′v∗k′)2

×
(

1 − fk1 − 4
3
fk2 − fk3

)(
1 − fk′1 − 4

3
fk′2 − fk′3

)
,

(4.3)

which leads to

Tr ρBCSV4 =
∑

k

∆kg
∆∗

kG∆∗
kG

4E2
k

(
1 − fk1 − 4

3
fk2 − fk3

)
,

(4.4)
where the gap parameter for quadruples was introduced,
namely

∆kg := −|Λ|−1
∑

k′
gkk′(u∗

k′vk′)2
(
1−fk′1− 4

3
fk′2 − fk′3

)
.

The expression above can be transformed to the following
form

∆kg = −|Λ|−1
∑

k′
gkk′

∆k′G∆k′G

4E2
k′

(
tanh

1
2
βEk′

)2

.

(4.5)
As is seen, the quadruple gap equation is modified by the

presence of
(

tanh 1
2 βEk

Ek

)2

in the integral which is the prod-
uct of two BCS contributions. Moreover, it is possible to
deduce at this stage of the considerations that both the
Cooper pairs and the quadruples have the same critical
temperature. If only the BCS gap vanishes the quadruple
gap does as well.

At this stage the free energy reads

Fs = FBCS

+
1
2

∑

k

∆∗
kg∆kG∆kG + ∆kg∆

∗
kG∆∗

kG

4E2
k

(
tanh

1
2
βEk

)2

(4.6)

We can now proceed towards the addressing the next
problem. It is known from general thermodynamics that
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there exists a relationship between the free energy and the
critical magnetic field Hc. It reads

|Λ|H
2
c

8π
= Fn −Fs, (4.7)

where Fn is the free energy in the normal state. It is easy
to show that after passing to the thermodynamic limit we
have in the ground state

H2
c

8π
= −ρF δ2 + ρF δ

√
δ2 + |∆G|2 + ρF

|∆g|2
gρF

,

where the first two terms are BCS and the last one is
the quadruple correction. This points to the larger criti-
cal magnetic field than in the BCS theory. This fact can
be explained by the necessity of introducing some addi-
tional amount of energy in order to destroy quadruples
and Cooper pairs because more energy is involved in bind-
ings between fermions at this stage.

5 Numerical results

Obviously we are not able to calculate all thermodynamic
functions analytically for finite temperatures and we are
forced to use numerical methods. At first, we need to solve
two equations for both gaps, namely

2
GρF

=

δ∫

−δ

dξ

EG
tanh

(
1
2
βct

−1EG

)
, (5.1)

|∆g| =
1
4
gρF |∆G|2

δ∫

−δ

dξ

E2
G

(
tanh(

1
2
βct

−1EG)
)2

, (5.2)

where βc = 1/kBTc, EG =
√

ξ2 + |∆G|2 and t = T
Tc

is a
reduced temperature. Fortunately, they can be solved sep-
arately. To find the critical temperature it suffices to solve
(5.1) for t = 1 and ∆G = 0. The numerical calculations
were done for the following set of parameters: The Fermi
energy EF = 0.5 eV, δ = 0.01 eV, GρF = 1, gρF = 0.05.
Tc = 51.73 K (βc = 224.382 eV−1) was obtained. The
ground state values of the gap parameters are: |∆G(0)| =

δ
sinh 1

GρF

= 0.008509 eV and |∆g(0)| = 0.00018417 eV. It

is seen that the BCS gap is about two orders of magnitude
greater than the quadruple one. The graphs of both gap
parameters divided by their corresponding ground state
values versus the reduced temperature are presented in
Figure 1. The quadruple gap curve starts to decrease ear-
lier than the BCS one when the temperature is increased
to the critical temperature. Moreover, the quadruple gap
is a linear function of the temperature in the vicinity of Tc.

Now it is worthwhile to undertake the problem of
the validity of the choice g

G = 0.05. If we agree that
�ωkF ≈ δ then δ ≈ vs

√
2mEF , where vs denotes the ve-

locity of sound and m the electron mass. This leads to
vs ≈ 4.4 × 103 m

s what means a sufficiently good agree-
ment with values of that velocity in the solid state physics

Fig. 1. The ratio ∆(t)
∆(0)

plotted for the pure BCS system and the

system with the Cooper pairs and quadruples. The continuous
curve corresponds to the BCS gap parameter divided by its
value at t = 0. The dashed curve corresponds to the quadruple
gap parameter divided by its value at t = 0. The former is
plotted according to equation (5.1) and the latter according to
equations (5.1) and (5.2). The appearance of the BCS gap at
Tc entails the appearance of the quadruple gap. The quadruple
gap is a linear function of the temperature in the vicinity of Tc.

at least to the order of magnitude. Moreover, if one no-

tices that g
G =

(
DkF

δ

)4

then DkF

δ =
(

g
G

) 1
4

that leads to
the obvious inequality DkF < δ � EF . Both of the results
point to the dominating role of the Fermi energy in the
system; therefore the Migdal’s theorem is not violated and
the normal Fermi liquid description of the normal phase
is correct.

The free energy density is calculated by using the fol-
lowing expression

f(t)
cn(Tc)Tc

=
fBCS(t)
cn(Tc)Tc

− 3
2π2

β2
c

gρF
|∆g|2 (5.3)

with the BCS free energy density

fBCS(t)
cn(Tc)Tc

=

− 3
π2

E
− 1

2
F β2

c

[
tβ−1

c

−δ∫

−EF

dξ
√

ξ + EF ln(1 + eβct−1ξ)

+ tβ−1
c

∞∫

δ

dξ
√

ξ + EF ln(1 + e−βct−1ξ) + tβ−1
c

√
EF

×
δ∫

−δ

dξ ln(1 + e−βct−1EG) +
1
2

√
EF δ

√
δ2 + |∆2

G|

+
1
2
|∆G|2

δ∫

−δ

dξ

EG

1
1 + eβct−1EG

]
+ C, (5.4)

where C is a constant, cn(Tc) = 2
3π2ρF Tck

2
B denotes the

specific heat for the free electron gas at Tc. The graphs of



38 The European Physical Journal B

the free energy density for the pure BCS system, the mixed
system (when both interactions are present) and normal
one are plotted in Figure 2. The shape of the curve for
the mixed state is very similar to that of the BCS system
and is slightly below the latter. This means that the free
energy of the system with two interactions is lower than
the BCS free energy.

Now we proceed to the entropy density. This thermo-
dynamic function can be calculated from

s(t)
cn(Tc)

=
sBCS(t)
cn(Tc)

+
3
π2

β2
c

gρF
|∆g|d|∆g|

dt
. (5.5)

The correction to the entropy density for the BCS system
sBCS is negative which follows from d|∆g|

dt < 0. The BCS
entropy density is

sBCS

cn(Tc)
=

3
π2

βcE
− 1

2
F

⎡

⎣
−δ∫

−EF

dξ
√

ξ + EF
e−βct−1ξ

1 + e−βct−1ξ
ln(1 + eβct−1ξ)

+

∞∫

δ

dξ
√

ξ + EF
eβct−1ξ

1 + eβct−1ξ
ln(1 + e−βct−1ξ)

+

−δ∫

−EF

dξ
√

ξ + EF
1

1 + e−βct−1ξ
ln(1 + e−βct−1ξ)

+

∞∫

δ

dξ
√

ξ + EF
1

1 + eβct−1ξ
ln(1 + eβct−1ξ)

+
1
2

√
EF δ

√
δ2 + |∆G|2 +

√
EF

δ∫

−δ

dξ
eβct−1EG

1 + eβct−1EG

× ln(1 + e−βct−1EG) +
√

EF

δ∫

−δ

dξ
ln(1 + eβct−1EG)

1 + eβct−1EG

⎤

⎦ .

(5.6)

The form of the correction term was derived in Ap-
pendix B. The graphs of the entropy density for the mixed,
BCS and normal states are plotted in Figure 3. The mixed
state is more ordered than the BCS one. That is why the
entropy for the state with the Cooper pairs and quadru-
ples is lower than for the pure BCS system. As is seen this
entropy is continuous and the system with both interac-
tions present undergoes the second order phase transition.

The next function is the specific heat. It can be ob-
tained from

c(t)
cn(Tc)

=
cBCS(t)
cn(Tc)

+
3

2π2

β2
c

gρF
t
d2|∆g|2

dt2
, (5.7)

Fig. 2. The free energy density ratios f
cn(Tc)Tc

plotted for

the normal, BCS and mixed states. The continuous line cor-
responds to the pure BCS case. The dashed line corresponds
to the mixed system and the dotted to the normal one. The
BCS free energy density is plotted according to equation (5.4)
whereas the mixed case to equations (5.3) and (5.4).

Fig. 3. The entropy density ratios s
cn(Tc)

are plotted for the

normal, pure BCS and mixed states. The continuous curve cor-
responds to the pure BCS case. The dashed line corresponds
to the mixed case and the dotted one to the normal case. They
were calculated according to equations (5.5) and (5.6).

where

cBCS(t)
cn(Tc)

=
3β3

c

4π2
√

EF t2

⎡

⎣
−δ∫

−EF

dξ
√

ξ + EF
ξ2

cosh2 1
2βct−1ξ

+

∞∫

δ

dξ
√

ξ+EF
ξ2

cosh2 1
2βct−1ξ

+
√

EF

δ∫

−δ

dξ
E2

G

cosh2 1
2βct−1EG

−t|∆G|d|∆G|
dt

√
EF

δ∫

−δ

dξ
1

cosh2 1
2βct−1EG

⎤

⎦ . (5.8)
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Fig. 4. The specific heat ratios c
cn(Tc)

are plotted for the nor-

mal, pure BCS and mixed states. The continuous curve corre-
sponds to the pure BCS case. The dashed line corresponds to
the mixed case and the dotted one to the normal case. They
were obtained by using (5.7) and (5.8). As is seen there are
jumps in the specific heat for the BCS and mixed states. The
jump in the BCS case is lower than that in the mixed state
case and the difference between them is 0.0975.

The form of the correction to the BCS specific heat cBCS

was derived in Appendix B as well and turns out to be
positive what implies that the jump for the total system
is higher than that in the BCS case. The reader can find
the form of |∆G|d|∆G|

dt in that Appendix. The graphs of the
specific heat for three cases mentioned above are plotted
in Figure 4. In fact, we obtained

cBCS − cn

cn

∣∣∣∣∣
T=Tc

= 1.3826, (5.9)

c − cn

cn

∣∣∣∣∣
T=Tc

= 1.4801. (5.10)

The difference between them , it is the correction to the
BCS specific heat, is equal

∆c

cn(Tc)

∣∣∣∣∣
T=Tc

=
3
π2

β2
c c2

0gρF

[(
|∆G|d|∆G|

dt

)∣∣∣∣∣
T=Tc

]2

= 0.0975, (5.11)

where

c0 := lim
t→1

|∆G|→0

δ∫

0

dξ

E2
G

(
tanh

(
(
1
2
βct

−1EG

))2

and
(
|∆G|d|∆G|

dt

)∣∣∣∣∣
T=Tc

= − 4δ2 tanh 1
2βcδ

βcδ + βcδ2c0 − 2 tanh 1
2βcδ

.

(5.12)

Fig. 5. The height of the BCS specific heat jump versus the
inverse of the critical temperature βc.

The derivation of equations (5.11) and (5.12) is outlined
in Appendix B. It is very important to note that the cor-
rection to the BCS specific heat and as a consequence the
jump are linear in gρF and vanish when gρF → 0. This
fact expresses non-universality of the correction. More-
over, it is worthwhile to mention that there is some devi-
ation from the universal values |∆G(0)|βc = 1.7638... and
the jump in the BCS theory ∆c

cn(Tc) = 1.426... [12]. Here,
we obtain |∆G(0)|βc = 1.9093 and the BCS jump equal
1.3826 (see Eq. (5.9)). The reason of the deviation is that
the calculations concern the intermediate BCS coupling
and in this regime the approximations used for the weak-
coupling case (e.g., [20]) are not valid. It is easy to check
that the jump of the BCS specific heat at Tc is

cBCS − cn

cn

∣∣∣∣∣
T=Tc

=
12β2

c

π2

δ2 tanh2 1
2βcδ

βcδ + βcδ2c0 − 2 tanh 1
2βcδ

.

We immediately see that this jump is an explicit function
of βc and therefore a function of GρF . In Figure 5 that
function is shown. It is seen that the jump gets enhanced
when βc increases (GρF decreases). The maximum jump
equal 1.5372 is obtained at about βc = 400 eV−1 what
corresponds to GρF ≈ 0.66. If the BCS coupling constant
decreases (βc → ∞) further, the jump tends to the fa-
miliar value 1.426... This figure shows some limitations
of the conventional BCS theory regarding strong coupling
regime. As is known from experiment lead or some high
Tc superconductors exhibit larger values of coupling con-
stants and the specific heat jump than the BCS values [20].
Unfortunately, the conventional BCS theory cannot pro-
vide a sufficiently good frame for the description of them.
When GρF becomes too large, then the jump of the spe-
cific heat is too low and the theory fails. Even in our case,
where GρF = 1, one can notice the onset of this effect and
as a consequence the jump equal 1.3826. Thus, a more gen-
eral theory is needed for the description of strong coupling
superconductors. The Eliashberg approach or the concept
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Fig. 6. The squared critical magnetic fields H2
c in 8πcn(Tc)Tc

units are plotted for the pure BCS and mixed states. The con-
tinuous curve corresponds to the pure BCS case. The dashed
line corresponds to the mixed case. They were calculated ac-
cording to equations (4.6), (5.3) and (5.4). The curve for the
mixed state exceeds that for the pure BCS case.

of tightly bound polarons [20] would be good examples of
such theories but the generalization to involve the four-
fermion interactions poses a great challenge.

What remains is the squared critical magnetic field.
This function is presented in Figure 6 together with the
BCS curve. It is seen that the squared critical magnetic
field for the mixed state exceeds the BCS one. Both curves
exhibit convexity down in the vicinity of the critical tem-
perature. This is connected with the fact that the critical
temperature is much higher here than those for super-
conductors in the weak-coupling regime. This means that
such an effect could not be revealed in this limit due to
very low temperatures.

At the end of this section we would like to show the
analytical expressions for the quadruple gap and the cor-
rections to some thermodynamic functions in the weak-
coupling regime. Let us start with the vicinity of T = 0.
In the paper [20] one can find the following formula for
the BCS gap at very low temperatures

|∆G(t)| = |∆G(0)| −
√

2πβ−1
c t|∆G(0)|e−|∆G(0)|βct−1

.

(5.13)
Because the system is at very low temperatures and
|∆G(0)|

δ � 1 the expression (5.2) can be approximated by

|∆g| ≈ 1
4
gρF |∆G(t)|2

δ∫

−δ

dξ

E2
G

≈ π

4
gρF |∆G(t)|,

where at the last stage the approximation arctan δ
|∆G(t)| ≈

π
2 was used. Finally, the quadruple gap in the vicinity of
T = 0 is

|∆g| ≈ 1
4
gρF |∆G(0)| − 1

4
gρF

√
2πβ−1

c t|∆G(0)|e−|∆G(0)|βct−1
. (5.14)

It is easy to show that the corrections to the entropy den-
sity and specific heat vanish when t → 0. The correction
to the squared critical magnetic field at T = 0 is as follows

∆H2
c (0)

8πcn(Tc)Tc
≈ 3

32
β2

cgρF |∆G(0)|2

and is in agreement with the result from Section 4.
Now, we proceed towards the opposite limit T →

Tc. In the paper [20] the relationship tanh x
x =

∞∑
n=−∞

1
x2+(π(n+ 1

2 ))2
, where n is integer, was applied in or-

der to obtain |∆G(t)| ≈ πβ−1
c

√
8

7ζ(3) t
√

1 − t, where ζ(3)
is the Riemann Zeta function. Since the temperature is
very close to t = 1 this formula is usually approximated
by |∆G(t)| ≈ πβ−1

c

√
8

7ζ(3)

√
1 − t. It is reasonable to follow

this route and use in (5.2)

(
tanhx

x

)2

=
∞∑

n=−∞
m=−∞

1
x2 + (π(n + 1

2 ))2
1

x2 + (π(m + 1
2 ))2

.

After performing the integration and a few steps we obtain
finally

|∆g(t)| ≈ 2
π2

βct
−1gρF |∆G(t)|2

×
∞∑

n=0
m=0

1
(2n + 1)(2m + 1)(n + m + 1)

.

The sum in the expression above is approximately equal
2.104 hence after making use of the more accurate form
of |∆G(t)| it yields

|∆g(t)| ≈ 4.208 β−1
c gρF

8
7ζ(3)

(1 − t)t

≈ 4.208 β−1
c gρF

8
7ζ(3)

(1 − t). (5.15)

It is immediately visible that the quadruple gap is a linear
function of t in the vicinity of Tc. Having found |∆g(t)| we
are able to write the corrections to the rest of the thermo-
dynamic functions down. Let us start with the correction
to the squared critical field, namely

∆H2
c (t)

8πcn(Tc)Tc
≈ 26.561 gρF

(
8

7ζ(3)

)2

(1 − t)2, (5.16)

It is worthwhile to note that the squared critical field in
the BCS theory is proportional to (1−t)2 [18] in the vicin-
ity of Tc that is very low in the weak-coupling regime. The
correction to the entropy density reads

∆s(t)
cn(Tc)

≈ −53.122
gρF

π2

(
8

7ζ(3)

)2

(1 − t) (5.17)
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and finally the correction to the specific heat is

∆c(t)
cn(Tc)

≈ 53.122
gρF

π2

(
8

7ζ(3)

)2

t (5.18)

that leads to the jump with respect to the BCS result

∆c

cn(Tc)

∣∣∣∣∣
T=Tc

≈ 53.122
gρF

π2

(
8

7ζ(3)

)2

. (5.19)

The very interesting question arises if there is a link be-
tween equations (5.11) and (5.19). It turns out that for
the set of parameters used in the paper the formula (5.19)
gives 0.2432 what significantly exceeds the value 0.0975
and obviously overestimates the value of the jump. The
agreement is obtained when the BCS coupling is suffi-
ciently weak and as a consequence βc is very large. Let us
take (5.12) for some very large βc and t equal 1 and as a
result very large c0. It yields

|∆G|d|∆G|
dt

≈ − 4
c0βc

,

then let us substitute the expression above to (5.11). One
obtains

∆c

cn(Tc)

∣∣∣∣∣
T=Tc

≈ 48
π2

gρF . (5.20)

For instance, if gρF = 0.005 then equations (5.19) and
(5.20) yield 0.02423. As is seen all the corrections are lin-
ear in gρF . This linearity implies non-universality of the
corrections.

6 The mean field approach

In this section we would like to show strong connections
with the results obtained in [10]. In that paper we tried
to address the problem of thermodynamics of the general
Hamiltonian H defined in the Introduction. The mean
field method was used in order to obtain the statistical
sum and two orders parameters - for Cooper’s pairs and
quadruples, respectively. Both gaps were assumed to be
real. Unfortunately, the final expressions turned out to be
very complicated. Let us generalize the problem to the
case with two complex gaps. Our mean field Hamiltonian
reads

HM =
∑

k>0

HMk =
∑

k>0

(ξk
∑

σ

(nkσ+n−kσ)−∆Gk(α∗
k+α∗

−k)

− ∆∗
Gk(αk + α−k) − 2∆∗

gkβk − 2∆gkβ∗
k + Ck), (6.1)

where
αk = a−k−ak+, βk = b−kbk

Ck = ∆Gkσ∗
k + ∆∗

Gkσk + ∆gkτ∗
k + ∆∗

gkτk

∆Gp := |Λ|−1
∑

p′
Gkk′σk′ , ∆gk := |Λ|−1

∑

p′
gkk′τk′

(6.2)
with σGk = Tr e−βHMkαk

Tr e−βHMk
and τgk = Tr e−βHMkβk

Tr e−βHMk
in prac-

tice. We followed the standard procedure of Bogolyubov
et al. [14,15] and the method of Czerwonko [16,17] for the
diagonalization of the Hamiltonian HMk. Due to the lack
of space the reader is referred to [10], where the details of
the procedures can be found.

The result of these methods is as follows:

(A) There are four 1-dimensional and four 2-dimensional
eigenspaces Mki(i = 1, 2, 3, 4, 5, 6, 7, 8) of the HMk.
They are spanned, respectively, by the following vec-
tors with the corresponding eigenvalues Ek and Ek±
equal as follows:

1. |1010〉 Ek = 2ξk 5. |1000〉 |1110〉 Ek±
2. |0101〉 Ek = 2ξk 6. |0001〉 |0111〉 Ek±
3. |1100〉 Ek = 2ξk 7. |0010〉 |1011〉 Ek±
4. |0011〉 Ek = 2ξk 8. |0100〉 |1101〉 Ek±

where Ek± = 2ξk±EGk with EGk = (ξ2
k + |∆Gk|2)1/2.

In each of the subspaces Mki(i = 5, 6, 7, 8) the eigen-
problem of HMk reduces to that of the matrix

(
ξk ∆∗

Gk
∆Gk 3ξk

)
. (6.3)

The eigenvectors of HMk in these subspaces have the
form

|Ek± 〉 = ck±|n1n2n3n4 〉 + dk±|m1m2m3m4 〉 (6.4)

where
4∑

i=1

ni = 1,
4∑

i=1

mi = 3 and

|ck±|2 =
(ξk ∓ EGk)2

|∆Gk|2 + (ξk ∓ EGk)2
,

|dk±|2 =
|∆Gk|2

|∆Gk|2 + (ξk ∓ EGk)2
.

(B) There is one 4-dimensional common subspace Mk9 of
HMk spanned by the vectors |0000〉, |1001〉, |0110〉,
|1111〉. Let us use the following basis in Mk9:

{|0000〉,−|1001〉, |0110〉,−|1111〉} (6.5)

and denote the projector on Mk9 by Pk9. Therefore,
in the basis (6.5) we have

Pk9HkPk9 =

⎛

⎜⎝

0 ∆∗
Gk ∆∗

Gk 2∆∗
gk

∆Gk 2ξk 0 ∆∗
Gk

∆Gk 0 2ξk ∆∗
Gk

2∆gk ∆Gk ∆Gk 4ξk

⎞

⎟⎠ . (6.6)

Consecutively, the index k will be suppressed in this
section. The solutions of the eigenproblem are:

E(2) = 2ξ
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and
E(k) = 2ξ + yk, (6.7)

where

yk = 2(−1)k√r cos
(

ϕ

3
+

kπ

3

)
, k = 0,±1 (6.8)

with r = 4/3(|∆g|2 + |∆G|2 + ξ2), cosϕ = tr−
3
2 and

t = 2(∆g∆
∗
G∆∗

G + ∆∗
g∆G∆G). These solutions yield

the corresponding eigenvalues of HMk in Mk9, viz.,
Let u(j), v

(j)
1 , v

(j)
2 , s(j) denote the components of the

eigenvectors |E(j) 〉 of P9HP9 in the basis (6.5):

P9HP9|E(j) 〉 = E(j)|E(j) 〉 (6.9)

along with

|E(j) 〉 = u(j)|0000〉 − v
(j)
1 |1001〉+ v

(j)
2 |0110〉

− s(j)|1111〉, j = 0,±1, 2. (6.10)

One finds

|E(2) 〉 = |2ξ 〉 =
1√
2
(|1001〉+ |0110〉)

and the components of the remaining three eigenvec-
tors |E(j) 〉 equal

|u(j)|2 =
|a(j)|2
D(j)

, v
(j)
1 = v

(j)
2 , |v(j)

1 |2 =

|b(j)|2
D(j)

, |s(j)|2 =
|c(j)|2
D(j)

, = 0 ± 1 (6.11)

where

|a(i)|2 = (2∆∗
g∆G − (4ξ − E(i))∆∗

G)(2∆g∆
∗
G

− (4ξ − E(i))∆G)(E(i) − 2ξ)2, (6.12)

|b(i)|2 = 4(∆∗
g∆G∆G +∆g∆

∗
G∆∗

G + |∆G|2(E(i) −2ξ))2,
(6.13)

|c(i)|2 = (E(i)∆G + 2∆g∆
∗
G)(E(i)∆∗

G

+ 2∆∗
g∆G)(E(i) − 2ξ)2, (6.14)

D(i) = |a(i)|2 + 2|b(i)|2 + |c(i)|2. (6.15)

7 Connection with the mean field approach

We would like to show that there exists the link between
these both approaches to the problem of the coexistence
of Cooper’s pairs and quadruples. The simplest way to do
this is to restrict oneself to the ground state. We are still
interested in the case in which gρF

GρF
� 1. Then, E(−1) is

connected with the energy of the ground state. For i = −1
one finds that

ϕ = arccos 2

(
3
4

)3/2
∆∗

g∆G∆G + ∆g∆
∗
G∆∗

G

(|∆g|2 + |∆G|2 + ξ2)3/2
.

It is easy to show that in this regime of coupling constants
we have

2

(
3
4

)3/2
∆∗

g∆G∆G + ∆g∆
∗
G∆∗

G

(|∆g|2 + |∆G|2 + ξ2)3/2
� 1

and the following approximation is valid

ϕ

3
≈ π

6
− 1

2

√
3

2
∆∗

g∆G∆G + ∆g∆
∗
G∆∗

G

(|∆g|2 + |∆G|2 + ξ2)3/2
.

Making use of the expression above we obtain

cos

(
ϕ

3
− π

3

)
= cos

(
π

6
+

1
2

√
3

2
∆∗

g∆G∆G + ∆g∆
∗
G∆∗

G

(|∆g|2 + |∆G|2 + ξ2)3/2

)

≈
√

3
2

−
√

3
8

∆∗
g∆G∆G + ∆g∆

∗
G∆∗

G

(|∆g|2 + |∆G|2 + ξ2)3/2
.

Finally, we are able to write down the energy E(−1), viz.,

E(−1) = 2ξ − 2
√
|∆g|2 + |∆G|2 + ξ2

+
1
2

∆∗
g∆G∆G + ∆g∆

∗
G∆∗

G

|∆g|2 + |∆G|2 + ξ2
(7.1)

and the remaining energies

E(1) = 2ξ − ∆∗
g∆G∆G + ∆g∆

∗
G∆∗

G

|∆g|2 + |∆G|2 + ξ2
,

E(0) = 2ξ + 2
√
|∆g|2 + |∆G|2 + ξ2

+
1
2

∆∗
g∆G∆G + ∆g∆

∗
G∆∗

G

|∆g|2 + |∆G|2 + ξ2
.

As one can see, the lowest energy corresponds to E(−1). In
order to obtain the full ground state energy it is advisable
to write down the free energy of the system, viz.,

F = −β−1 ln
∏

k>0

Zk, (7.2)

where the statistical sum Zk is

Zk = e−β(2ξk+∆Gkσ∗
k+∆∗

Gkσk+∆gkτ∗
k+∆∗

gkτk)

× (5 + 4e−βEGk + 4eβEGk + e−βy−1k

+ e−βy1k + e−βy0k).

In β → ∞ limit we obtain the ground state energy

E0 =
∑

k>0

(2ξk +∆Gkσ∗
k+∆∗

Gkσk+∆gkτ∗
k +∆∗

gkτk+y−1k),

what can be transformed to

E0 =
∑

k>0

(
2ξk − 2

√
|∆gk|2 + |∆Gk|2 + ξ2

+
1
2

∆∗
gk∆Gk∆Gk + ∆gk∆∗

Gk∆∗
Gk

|∆gk|2 + |∆Gk|2 + ξ2

+ ∆Gkσ∗
k + ∆∗

Gkσk + ∆gkτ∗
k + ∆∗

gkτk.

)
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Now if we use the following limits

lim
β→∞

∆gk→0

σk = − lim
∆gk→0

(u(−1)∗
k v

(−1)
1k + v

(−1)∗
1k s

(−1)
k )

= u∗
kvk =

∆Gk

2EGk
, (7.3)

lim
β→∞

∆gk→0

τk = − lim
∆gk→0

u
(−1)∗
k s

(−1)
k

= −(u∗
kvk)2 = −∆Gk∆Gk

4E2
Gk

(7.4)

along with the corresponding ones for the complex conju-
gates and the following approximation

√
|∆gk|2 + |∆Gk|2 + ξ2 ≈ EGk,

we obtain exactly the same expression for the ground state
like equation (2.6). Moreover, we obtain the same equa-
tions for the order parameters. To see this it suffices to
substitute the limits (7.3) and (7.4) to the definitions (6.2).

One important remark should be made. The mean field
theory points to some restrictions of the perturbative ap-
proach. In the latter the BCS order parameter is not di-
rectly influenced by quadruples while in the former this
influence emerges in the natural way. In order to incor-
porate this influence into perturbation theory one would
have to determine the first order correction to the BCS
ground state vector (2.1) and calculate the total ground
state energy for the full Hamiltonian H with respect to
the improved ground state vector. However, this proce-
dure seems to be much more complicated in practice than
the Bogolyubov’s approach. In fact, in the mean field the-
ory both parameters are coupled from the very beginning
what can be seen from the following expansions for small
∆gk and ∆∗

gk

σk =
1
2

∆Gk

EGk
−∆∗

Gk

ξ2
k + E2

Gk

4E4
Gk

∆gk +
∆3

Gk

4E4
Gk

∆∗
gk + . . . (7.5)

τk = −1
4

∆2
Gk

E2
Gk

+
−3|∆Gk|2+8E4

Gk

16E5
Gk

∆gk − 3∆4
Gk

16E5
Gk

∆∗
gk+ . . .

(7.6)
It is not difficult to show that for the parameters used in
Section 5 and the assumptions |∆g|

EG
� 1, |∆G|

EG
≤ 1, |ξ|

EG
≤

1 one can neglect linear corrections and the subsequent
terms because they are small when compared with the
zero order term (index k has been dropped). For linear
terms in the expansion for σ we have

|∆g|
EG

|∆G|
EG

ξ2 + E2
G

4E2
G

≤ 1
2
|∆g|
EG

|∆g|
EG

� 1
2
|∆G|
EG

and

|∆g|
EG

|∆G|3
4E3

G

� 1
2
|∆G|
EG

⇔ 1
2
|∆g|
EG

|∆G|2
E2

G

� 1,

whereas for τ

3
16

|∆G|4
E4

G

|∆g|
EG

� 1
4
|∆G|2
E2

G

⇔ 3
4
|∆G|2
E2

G

|∆g|
EG

� 1,

8
16

|∆g|
EG

� 1
4
|∆G|2
E2

G

⇔ 2
|∆g|
|∆G| �

|∆G|
EG

.

The last inequality holds for the parameters used in this
paper because the right hand side of the inequality above
is larger by one order of magnitude than the left hand
side. Of course, in more general approach to the problem
one has to include at least the first order corrections in
the equations for the order parameters what leads to solv-
ing the system of four equations. The situation becomes
much more complicated at finite temperatures but it is
still possible to obtain the agreement with results com-
ing from perturbation theory. It means that the form of
the gap equations after keeping only zero order terms in
the expansions with respect to ∆g and ∆∗

g are the same
at finite temperatures as it is in perturbation theory. The
same assertion concerns the free energy.

In the mean field approach the necessity of introducing
the complex order parameters is transparent. If we admit-
ted them to be real we would get into some problems with
the definition and interpretation of the quadruple gap due
to the negative sign in front of the zero order term. Such
a definition would lead to the negative gap. Even if the
quadruple gap was negative we would still obtain the neg-
ative correction to the BCS ground state energy and as a
result the state with lower energy than BCS one.

8 Conclusions

The BCS system with a four-fermion interaction was in-
vestigated. This was done by using perturbation theory
with the BCS system standing for an unperturbed one.
The ground state and thermodynamic properties were ex-
amined up to the first order of the perturbation expansion.
As a result, the total ground state energy of the system
turned out to be lower than the BCS one. Moreover, both
interactions together do not shift the chemical potential
with respect to the Fermi energy of the free electron gas.
The resulting complex gap for quadruples is determined
by the BCS complex gap and vanishes when the BCS gap
becomes zero. The thermodynamics of the total system
differs slightly from the BCS thermodynamics. For exam-
ple, the squared critical magnetic field exceeds that for
the BCS system. The higher jump than that in the BCS
system occurs. It is supposed here that the second order
corrections are not important at finite temperatures be-
cause they are not greater than 0.5 percent of the first
order correction in the ground state. The analytical ex-
pressions for the quadruple gap and the corrections to
the thermodynamic functions in the vicinity of T = 0
and T = Tc were found as well. This concerns the weak-
coupling regime only and all the expressions exhibit non-
universality due to their linear dependence on gρF .

Moreover, we confronted our results with those ob-
tained in [10]. It was explicitly done for the ground state
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only but the same conclusions are valid for the expressions
at finite temperatures as well. We showed the agreement
between both methods, it is, the same expressions for the
ground state energy, the same equations for the gap pa-
rameters (with neglecting the corrections). However, per-
turbation theory is restricted only to the case when the
four-fermion interaction is significantly weaker than BCS
interaction. For instance, the effect of quadruples on the
BCS gap parameter is not present at this stage in the pa-
per unless one incorporates the first order correction to
the BCS ground state vector. Yet in the case of the very
weak four-fermion interaction with respect to the BCS one
such an effect is not relevant. The mean field approach is
independent of how strong is the four-fermion interaction
with respect to BCS one. Finally, our results obtained by
using perturbation theory show some tendencies in be-
havior of the thermodynamic functions. The effects are
not very strong, especially in the weak-coupling regime,
and only the measuring the magnetic flux can provide the
ultimate answer regarding the presence of quadruples in
the system.

Author would like to thank Dr. Kristian K. Müller-Nedebock
for fruitful and helpful discussions and suggestions.

Appendix A

Let us introduce a new notation for vectors spanning the
subspace of k > 0, namely

|n1n2n3n4 〉 := (a∗
k1)

n1(a∗
k2)

n2(a∗
k3)

n3(a∗
k4)

n4 |0〉 ,

where ni = 0, 1, i = 1, 2, 3, 4. Thus the normalized k-
excited states in terms of that notation are represented
by the vectors

|k1〉 : = α∗
k1|kBCS 〉 = uk|1000〉 − vk|1110〉, (A.1)

|k2〉 : = α∗
k2|kBCS 〉 = uk|0100〉 − vk|1101〉, (A.2)

|k3〉 : = α∗
k3|kBCS 〉 = uk|0010〉 − vk|1011〉, (A.3)

|k4〉 : = α∗
k4|kBCS 〉 = uk|0001〉 − vk|0111〉, (A.4)

|k12〉 : = α∗
k1α

∗
k2|kBCS 〉 = |1100〉, (A.5)

|k13〉 : = α∗
k1α

∗
k3|kBCS 〉 = |1010〉, (A.6)

|k14〉 : = α∗
k1α

∗
k4|kBCS 〉 = −ukvk|0000〉

+ v2
k|0110〉 + u2

k|1001〉 − ukvk|1111〉, (A.7)
|k23〉 : = α∗

k2α
∗
k3|kBCS 〉 = ukvk|0000〉

+ u2
k|0110〉+ v2

k|1001〉 + ukvk|1111〉, (A.8)
|k24〉 : = α∗

k2α
∗
k4|kBCS 〉 = |0101〉, (A.9)

|k34〉 : = α∗
k3α

∗
k4|kBCS 〉 = |0011〉, (A.10)

|k123〉 : = α∗
k1α

∗
k2α

∗
k3|BCSk 〉k = vk|1000〉+uk|1110〉,

(A.11)
|k124〉 : = α∗

k1α
∗
k2α

∗
k4|BCSk 〉k = vk|0100〉+uk|1101〉,

(A.12)
|k134〉 : = α∗

k1α
∗
k3α

∗
k4|BCSk 〉k = vk|0010〉+uk|1011〉,

(A.13)

|k234〉 : = α∗
k2α

∗
k3α

∗
k4|BCSk 〉k = vk|0001〉 + uk|0111〉,

(A.14)

|k1234〉 : = α∗
k1α

∗
k2α

∗
k3α

∗
k4|BCS 〉k = −v2

k|0000〉
− vkuk|0110〉+ vkuk|1001〉 + u2

k|1111〉.
(A.15)

The product
∏

k′:k′>0
k′ �=k

|k′BCS 〉 has been dropped in the ex-

pressions (A.1)–(A.15). The spectrum above is the BCS
excitation spectrum written in k > 0-representation which
is more useful for our considerations than that for k be-
longing to whole momentum space [2,12].

Appendix B

In this Appendix we would like to show some very impor-
tant derivatives that are frequently used in the paper. The
first is

d|∆g|
dt

= 2|∆G|d|∆G|
dt

+
1
2
gρF |∆G|2 d

dt

×
δ∫

0

dξ

(
tanh 1

2βct
−1EG

EG

)2

,

where

d

dt

δ∫

0

dξ

(
tanh 1

2βct
−1EG

EG

)2

= βct
−1|∆G|d|∆G|

dt

×
δ∫

0

dξ

E3
G

tanh 1
2βct

−1EG

cosh2 1
2βct−1EG

− βct
−2

δ∫

0

dξ

EG

tanh 1
2βct

−1EG

cosh2 1
2βct−1EG

− 2|∆G|d|∆G|
dt

δ∫

0

dξ

E4
G

tanh2 1
2
βct

−1EG.

The following derivative is needed for the calculation of
the correction to the entropy density

d|∆G|
dt

= −
∂F (t,|∆G|)

∂t
∂F (t,|∆G|)

∂|∆G|
=

1
2
βct

−2|∆G|−1

×

δ∫
0

dξ(1 − tanh2 1
2βct

−1EG)

1
2βct−1

δ∫
0

dξ
(1−tanh2 1

2 βct−1EG)

E2
G

−
δ∫
0

dξ
tanh 1

2 βct−1EG

E3
G

,

(B.1)

where the defining equation is 1
GρF

= F (t, |∆G|) and

F (t, |∆G|) :=
δ∫
0

dξ
tanh 1

2 βct−1EG

EG
.

To calculate the correction to the specific heat we need

d2|∆g|2
dt2

= 2

(
d|∆g|

dt

)2

+ 2|∆g|d
2|∆g|
dt2

, (B.2)
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where

d2|∆g|
dt2

= 2

(
d|∆G|

dt

)2 |∆g|
|∆G|2 + 2|∆G|

(
d2|∆G|

dt2

)
|∆g|
|∆G|2

+ 2|∆G|d|∆G|
dt

d|∆g|
dt

|∆G|−2 − 4

(
|∆G|d|∆G|

dt

)2 |∆g|
|∆G|4

+ gρF |∆G|d|∆G|
dt

d

dt

δ∫

0

dξ

(
tanh 1

2βct
−1EG

EG

)2

+
1
2
gρF |∆G|2 d2

dt2

δ∫

0

dξ

(
tanh 1

2βct
−1EG

EG

)2

.

As one can see there is a need for calculation of d2|∆G|
dt2

and d2

dt2

δ∫
0

dξ

(
tanh 1

2 βct−1EG

EG

)2

, however the calculation of

them was omitted in the paper due to the significant
length.

The formula (5.11) can be derived if one notices that
in the limit t → 1 most of terms in (B.2) vanish and the
only nonzero are

(
d|∆g|

dt

)∣∣∣∣∣

2

T=Tc

+ gρF c0

(
|∆G|d|∆G|

dt

)∣∣∣∣∣
T=Tc

d|∆g|
dt

∣∣∣∣∣
T=Tc

− 1
2
gρ2

F c2
0

(
d|∆G|

dt
|∆G|

)∣∣∣∣∣

2

T=Tc

that lead finally to (5.11). Regarding (5.12) we
have to take a closer look at the integrals in (B.1)
in the limit t → 1. It suffices to use the fol-
lowing equalities d

dx
tanhax

x = a 1−tanh2 ax
x − tanhax

x2

and d
dx tanh ax = a(1 − tanh2 ax) and notice that the di-

vergence 1
ξ cancels out.
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